3.4.13 \(\int \frac {x^5}{a+b x^4+c x^8} \, dx\) [313]

Optimal. Leaf size=159 \[ -\frac {\sqrt {b-\sqrt {b^2-4 a c}} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}}+\frac {\sqrt {b+\sqrt {b^2-4 a c}} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}} \]

[Out]

-1/4*arctan(x^2*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b-(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2)/c^(1/2)/(-4
*a*c+b^2)^(1/2)+1/4*arctan(x^2*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b+(-4*a*c+b^2)^(1/2))^(1/2)*2^(1
/2)/c^(1/2)/(-4*a*c+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1373, 1144, 211} \begin {gather*} \frac {\sqrt {\sqrt {b^2-4 a c}+b} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}}-\frac {\sqrt {b-\sqrt {b^2-4 a c}} \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/(a + b*x^4 + c*x^8),x]

[Out]

-1/2*(Sqrt[b - Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*
Sqrt[b^2 - 4*a*c]) + (Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(
2*Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1144

Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(
d^2/2)*(b/q + 1), Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Dist[(d^2/2)*(b/q - 1), Int[(d*x)^(m - 2)/(b
/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]

Rule 1373

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^(2*(n/k)))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {x^5}{a+b x^4+c x^8} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {x^2}{a+b x^2+c x^4} \, dx,x,x^2\right )\\ &=\frac {1}{4} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx,x,x^2\right )+\frac {1}{4} \left (1+\frac {b}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {b-\sqrt {b^2-4 a c}} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}}+\frac {\sqrt {b+\sqrt {b^2-4 a c}} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 171, normalized size = 1.08 \begin {gather*} \frac {\left (-b+\sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )+\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {b+\sqrt {b^2-4 a c}} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x^2}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/(a + b*x^4 + c*x^8),x]

[Out]

((-b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]] + Sqrt[b - Sqrt[b^2 - 4*a*
c]]*Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*
Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 153, normalized size = 0.96

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\left (16 a^{2} c^{3}-8 a \,b^{2} c^{2}+b^{4} c \right ) \textit {\_Z}^{4}+\left (-4 a b c +b^{3}\right ) \textit {\_Z}^{2}+a \right )}{\sum }\textit {\_R} \ln \left (\left (\left (-4 c^{2} a +b^{2} c \right ) \textit {\_R}^{2}+b \right ) x^{2}+\left (4 a b \,c^{2}-b^{3} c \right ) \textit {\_R}^{3}+\left (2 a c -b^{2}\right ) \textit {\_R} \right )\right )}{4}\) \(105\)
default \(2 c \left (-\frac {\left (-b +\sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \arctanh \left (\frac {c \,x^{2} \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}+\frac {\left (b +\sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \arctan \left (\frac {c \,x^{2} \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )\) \(153\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

2*c*(-1/8/c*(-b+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2
*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))+1/8*(b+(-4*a*c+b^2)^(1/2))/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*
c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(x^5/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 567 vs. \(2 (119) = 238\).
time = 0.37, size = 567, normalized size = 3.57 \begin {gather*} \frac {1}{4} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (x^{2} + \frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {-\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}\right ) - \frac {1}{4} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (x^{2} - \frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {-\frac {b + \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}\right ) - \frac {1}{4} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (x^{2} + \frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {-\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}\right ) + \frac {1}{4} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}} \log \left (x^{2} - \frac {\sqrt {\frac {1}{2}} {\left (b^{2} c - 4 \, a c^{2}\right )} \sqrt {-\frac {b - \frac {b^{2} c - 4 \, a c^{2}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}}{b^{2} c - 4 \, a c^{2}}}}{\sqrt {b^{2} c^{2} - 4 \, a c^{3}}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

1/4*sqrt(1/2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(x^2 + sqrt(1/2)*(b^
2*c - 4*a*c^2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*a*c^3
)) - 1/4*sqrt(1/2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(x^2 - sqrt(1/2
)*(b^2*c - 4*a*c^2)*sqrt(-(b + (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2 - 4*
a*c^3)) - 1/4*sqrt(1/2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(x^2 + sqr
t(1/2)*(b^2*c - 4*a*c^2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^2*c^2
 - 4*a*c^3)) + 1/4*sqrt(1/2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))*log(x^2
- sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt(-(b - (b^2*c - 4*a*c^2)/sqrt(b^2*c^2 - 4*a*c^3))/(b^2*c - 4*a*c^2))/sqrt(b^
2*c^2 - 4*a*c^3))

________________________________________________________________________________________

Sympy [A]
time = 1.50, size = 76, normalized size = 0.48 \begin {gather*} \operatorname {RootSum} {\left (t^{4} \cdot \left (4096 a^{2} c^{3} - 2048 a b^{2} c^{2} + 256 b^{4} c\right ) + t^{2} \left (- 64 a b c + 16 b^{3}\right ) + a, \left ( t \mapsto t \log {\left (512 t^{3} a c^{2} - 128 t^{3} b^{2} c - 4 t b + x^{2} \right )} \right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**4*(4096*a**2*c**3 - 2048*a*b**2*c**2 + 256*b**4*c) + _t**2*(-64*a*b*c + 16*b**3) + a, Lambda(_t, _
t*log(512*_t**3*a*c**2 - 128*_t**3*b**2*c - 4*_t*b + x**2)))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 1034 vs. \(2 (119) = 238\).
time = 5.98, size = 1034, normalized size = 6.50 \begin {gather*} \frac {{\left (\sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} c - 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} + 16 \, a b^{2} c^{2} - 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a c^{3} - 32 \, a^{2} c^{3} + 8 \, a b c^{3} + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{3} - 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} a b c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b^{2} c + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c + \sqrt {b^{2} - 4 \, a c} c} b c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c - 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} x^{4} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x^{2}}{\sqrt {\frac {b + \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{8 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} + \frac {{\left (\sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{4} - 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b^{2} c - 2 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} c + 2 \, b^{4} c + 16 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a^{2} c^{2} + 8 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c^{2} + \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c^{2} - 16 \, a b^{2} c^{2} - 2 \, b^{3} c^{2} - 4 \, \sqrt {2} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a c^{3} + 32 \, a^{2} c^{3} + 8 \, a b c^{3} + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{3} - 4 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} a b c - 2 \, \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b^{2} c + \sqrt {2} \sqrt {b^{2} - 4 \, a c} \sqrt {b c - \sqrt {b^{2} - 4 \, a c} c} b c^{2} - 2 \, {\left (b^{2} - 4 \, a c\right )} b^{2} c + 8 \, {\left (b^{2} - 4 \, a c\right )} a c^{2} + 2 \, {\left (b^{2} - 4 \, a c\right )} b c^{2}\right )} x^{4} \arctan \left (\frac {2 \, \sqrt {\frac {1}{2}} x^{2}}{\sqrt {\frac {b - \sqrt {b^{2} - 4 \, a c}}{c}}}\right )}{8 \, {\left (a b^{4} - 8 \, a^{2} b^{2} c - 2 \, a b^{3} c + 16 \, a^{3} c^{2} + 8 \, a^{2} b c^{2} + a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} {\left | c \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

1/8*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(
2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c - 2*b^4*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sq
rt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c^2 + 16*a*b^2*c^2
 - 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*c^3 - 32*a^2*c^3 + 8*a*b*c^3 + sqrt(2)*sqrt(b^2 - 4
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c
- 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c + sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr
t(b^2 - 4*a*c)*c)*b*c^2 + 2*(b^2 - 4*a*c)*b^2*c - 8*(b^2 - 4*a*c)*a*c^2 + 2*(b^2 - 4*a*c)*b*c^2)*x^4*arctan(2*
sqrt(1/2)*x^2/sqrt((b + sqrt(b^2 - 4*a*c))/c))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 +
a*b^2*c^2 - 4*a^2*c^3)*abs(c)) + 1/8*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4 - 8*sqrt(2)*sqrt(b*c - sqrt(
b^2 - 4*a*c)*c)*a*b^2*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c + 2*b^4*c + 16*sqrt(2)*sqrt(b*c - sq
rt(b^2 - 4*a*c)*c)*a^2*c^2 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 -
 4*a*c)*c)*b^2*c^2 - 16*a*b^2*c^2 - 2*b^3*c^2 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*c^3 + 32*a^2*c^3 +
 8*a*b*c^3 + sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(
b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c + sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b^2*c + 8*(b^2 - 4*a*c)*a*c^2 + 2*(
b^2 - 4*a*c)*b*c^2)*x^4*arctan(2*sqrt(1/2)*x^2/sqrt((b - sqrt(b^2 - 4*a*c))/c))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^
3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*abs(c))

________________________________________________________________________________________

Mupad [B]
time = 2.81, size = 1220, normalized size = 7.67 \begin {gather*} \mathrm {atan}\left (\frac {x^2\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}+b^3\,x^2\,1{}\mathrm {i}-a\,b\,c\,x^2\,4{}\mathrm {i}}{8\,b^4\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}+128\,b^5\,c\,{\left (\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}+64\,a^2\,c^2\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}-1024\,a\,b^3\,c^2\,{\left (\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}+2048\,a^2\,b\,c^3\,{\left (\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}-48\,a\,b^2\,c\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}}\right )\,\sqrt {\frac {\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-b^3+4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {x^2\,\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}\,1{}\mathrm {i}-b^3\,x^2\,1{}\mathrm {i}+a\,b\,c\,x^2\,4{}\mathrm {i}}{8\,b^4\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}+128\,b^5\,c\,{\left (-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}+64\,a^2\,c^2\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}-48\,a\,b^2\,c\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}-1024\,a\,b^3\,c^2\,{\left (-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}+2048\,a^2\,b\,c^3\,{\left (-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}\right )}^{3/2}}\right )\,\sqrt {-\frac {b^3+\sqrt {-64\,a^3\,c^3+48\,a^2\,b^2\,c^2-12\,a\,b^4\,c+b^6}-4\,a\,b\,c}{512\,a^2\,c^3-256\,a\,b^2\,c^2+32\,b^4\,c}}\,2{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(a + b*x^4 + c*x^8),x)

[Out]

atan((x^2*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2)*1i + b^3*x^2*1i - a*b*c*x^2*4i)/(8*b^4*(((b^6
 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^
(1/2) + 128*b^5*c*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^4*c + 512*a^
2*c^3 - 256*a*b^2*c^2))^(3/2) + 64*a^2*c^2*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*
a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(1/2) - 1024*a*b^3*c^2*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 -
 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(3/2) + 2048*a^2*b*c^3*(((b^6 -
64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(3/
2) - 48*a*b^2*c*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^4*c + 512*a^2*
c^3 - 256*a*b^2*c^2))^(1/2)))*(((b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - b^3 + 4*a*b*c)/(32*b^
4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(1/2)*2i - atan((x^2*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2
)*1i - b^3*x^2*1i + a*b*c*x^2*4i)/(8*b^4*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a
*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(1/2) + 128*b^5*c*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2
- 12*a*b^4*c)^(1/2) - 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(3/2) + 64*a^2*c^2*(-(b^3 + (b^6 - 64
*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(1/2) - 48*
a*b^2*c*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 2
56*a*b^2*c^2))^(1/2) - 1024*a*b^3*c^2*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*
c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(3/2) + 2048*a^2*b*c^3*(-(b^3 + (b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^
2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(3/2)))*(-(b^3 + (b^6 - 64*a^3*c^3
+ 48*a^2*b^2*c^2 - 12*a*b^4*c)^(1/2) - 4*a*b*c)/(32*b^4*c + 512*a^2*c^3 - 256*a*b^2*c^2))^(1/2)*2i

________________________________________________________________________________________